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‘‘Two-stage’’ perturbation theory for bandwidth-limited amplification of optical solitons
near the zero-dispersion point

B. A. Malomed,* I. M. Uzunov,† M. Gölles, and F. Lederer
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We show that soliton propagation in transmission lines where bandwidth-limited amplification, nonlinear
gain or loss, and a strong third-order dispersion are present can be reasonably described in terms of a ‘‘two-
stage’’ perturbation theory. In contrast to the adiabatic soliton perturbation theory which is known to fail
beyond a critical strength of third-order dispersion, a modulation of the soliton phase caused by third-order
dispersion is taken into account in this approach.@S1063-651X~97!07302-9#

PACS number~s!: 42.81.Dp
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Among others, there are two fundamental problems
using solitons in optical fiber communication lines: to redu
the fiber dispersion~however, keeping it anomalous!, in or-
der to allow the weak Kerr nonlinearity to produce a su
ciently narrow soliton, and to compensate the dissipa
losses in long-haul systems@1#, simultaneously suppressin
the noise. In order to cope with the former problem, a car
wavelength near the zero-dispersion point~ZDP! can be
used, which in addition leads to the reduction of the soli
peak power. The latter problem can be resolved by mean
bandwidth-limited amplification~BLA !, i.e., the combined
action of optical amplifiers and filters.

A complicating factor is that third-order dispersion~TOD!
has usually to be taken into account near the ZDP. Altho
TOD is a Hamiltonian perturbation it gives rise to the em
sion of radiation where the so-called resonance radia
separates from the soliton and can entail a complete des
tion of the soliton @2–5#. Moreover, TOD leads to the
breakup of the two-soliton bound state@2,6–8#. But it is also
known that other perturbations can be exploited to supp
these detrimental effects of TOD. It was shown in@9# that,
e.g., the decay of the two-soliton bound state can be avo
if BLA comes into play. Moreover, it has been predict
@8,10# and experimentally verified lately@11# that BLA may
absorb the emitted resonance radiation, thus lending the
ton a much better stability. Thus in view of these obser
tions it is necessary to analyze the dynamical propertie
solitons in the presence of several qualitatively different p
turbations.

The effect of TOD on the dynamical behavior of a sing
soliton has been intensively studied@12,13,6,14,4,5#. The
soliton velocity and frequency shifts which appear due to
presence of TOD can correctly be described by transform
the pertinent perturbed nonlinear Schro¨dinger equation
~NLSE! into a perturbed, but integrable equation of t
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NLSE family which is correct up to the second order in t
TOD coefficient @13,6#. The frequently used adiabatic ap
proximation of the soliton perturbation theory for the NLS
~AST! ~see @15–17# and @18# for a review! describes the
soliton velocity in first order of the TOD coefficient, but fail
to provide the frequency shift@1,8#. Only recently it has been
shown that this frequency shift can also be obtained in
model provided that the constraint of the adiabatic evolut
is lifted @5#. This means that the mutual interaction of th
nonresonant radiation and the soliton, both propagating w
the same velocity, has been taken into account@5#. For the
sake of simplicity we use the term ‘‘velocity’’ although ac
tually an inverse velocity is meant.

The effect of TOD as well as that of TOD in combinatio
with BLA on the two-soliton interaction has been recen
studied@8,19# by using the AST. Provided that a weak TO
was the only perturbation, a good agreement with res
obtained from direct numerical simulations has been fou
@8#. However, for increased, but still realistic values of TO
the AST has been shown to fail. In particular, the veloc
imposed on the soliton by TOD may differ by a factor of 2
AST and numerical methods are compared@8#. If only TOD
acts as a perturbation this discrepancy between the nume
and an analytical approach can be reduced in using
model of Kodamaet al. @9#. Unfortunately, this model can
not be applied to non-Hamiltonian perturbations such
e.g., BLA and nonlinear loss or gain~NLG!. Basically, there
are two options to explain the failure of AST, viz., either th
emission of resonance radiation@3# or the nonadiabatic be
havior of the soliton. One is inclined to prefer the latter e
planation because BLA absorbs the resonance radia
@8,11#, as already mentioned above.

Recently, the soliton propagation was investigated un
the combined action of TOD~introduced by the filter!, BLA,
and sliding@20#. As an interesting result an asymmetry f
up and down sliding was found with respect to the ga
required to compensate for the losses. The basic idea o
perturbation approach used was to distinguish between
groups of perturbations and to treat them consecutively
the first stage a phase modulation~chirp! induced by TOD
has been taken into account. Having plugged this ansatz
the evolution equations for the energy and the moment
the dynamics of the soliton amplitude and mean freque
due to BLA and sliding filtering has been studied. The resu
obtained were in good agreement with direct numeri
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3778 55BRIEF REPORTS
simulations. This is in some respect surprising because
above separation might suggest that TOD has to be thestron-
gestperturbation whereas the authors analyzed just the
posite case@20#. Moreover, it has been shown previously@8#
that the usual AST holds for the strength of TOD assume
that paper. Hence the natural question arises whether
‘‘two-stage’’ perturbation theory can reproduce the nume
cal results which were obtained earlier for a fairly stro
TOD @8# and were in clear disagreement with the AST.

The aim of the present paper is therefore to disclose
potential of this two-stage approach for the case where T
is theprimary perturbation and linear BLA as well as non
linear loss or gain are considerably weaker. Moreover, i
intended to identify the limits of applicability of AST as fa
as an increasing TOD is concerned.

We mention that recently a similar two-stage perturbat
strategy has proven to be quite effective in another prob
related to optical solitons, namely, the search for a soliton
a model of a dual-core fiber, with BLA in one core and pu
losses in another@21#. In this case, the coupling between th
two cores was taken into account first as a relatively str
perturbation. This has allowed construction of a correspo
ing two-component soliton, for which the gain and loss
were next considered as the small perturbations. This
proach has allowed analytical prediction of the existence
stable soliton in the model. Very recently, these analyti
results have been corroborated by direct simulations@22#.

Because of the prominent role TOD plays in our case
first take into account a modulation of the phase induced
TOD, and then apply to the modified~chirped! soliton the
familiar techniques@18# which allow us to handle effects o
linear or nonlinear gain and losses and filtering. Howeve
will turn out that this procedure can even be applied if TO
and the remaining perturbations are comparable. This me
that a strong TOD is a sufficient, but not a necessary co
tion for the applicability of the two-stage model. We no
that the model used here resembles that put forward la
and referred to above@20# but differs in details. Moreover, in
the present paper a completely different issue is address

The model combining TOD, BLA, and NLG is based o
the following perturbed averaged nonlinear Schro¨dinger
equation for the envelopeu(z,t) of the electromagnetic
waves in the fiber, where, as usual,z stands for the propaga
tion distance andt is the so-called reduced time@9,8#:

iuz1
1
2utt1uuu2u5 i euttt1 ig0u1 ig1utt2 ig2uuu2u.

~1!

Here e is the TOD coefficient andg0 is the net gain, while
the coefficientg1 accounts for the linear losses due to t
finite amplifier or filter bandwidth. Furthermore, we ha
taken into account nonlinear losses or gain, the strengt
which is described byg2. Two-photon absorption corre
sponds tog2.0 whereas saturable absorption or nonline
amplification in a loop mirror corresponds tog2,0.

We expect that the soliton will depend onT[t2cz, c
being the unknown inverse equilibrium velocity of the so
ton. To obtain a solution of this form it is natural to tran
form Eq. ~1! into the coordinates (z,T). This transformation
will, obviously, produce the group velocity term2icuT . To
eliminate this term, we introduce the new field variable
he
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u~z,t![U~z,T!exp~ ict2 1
2c

2z!. ~2!

In the case of the usual NLS equation, this is tantamoun
the Galilean transform.

The transformed equation will receive many addition
terms. However, we expect that the velocityc, to be pro-
duced by the perturbation, will eventually have a certa
smallness, which will indeed be justified by the final resu
This fact allows one to omit all terms in the transform
equation proportional to different powers ofc, except for the
single one,22cg1UT , which is produced by insertion of Eq
~2! into the dispersive lossy term in Eq.~1!. While all the
other small terms will produce only small corrections to e
fects accounted for by the larger terms, this one will give r
to a new effect: a driving force which forces the soliton
move with a finite velocityc. Thus the final form of the
perturbed NLS to be considered in the present work is

iU z1
1
2UTT1uUu2U5 i eUTTT1 ig0U1 ig1UTT22cg1UT

2 ig2uUu2U. ~3!

Notice that, actually, the net gaing0 in Eq. ~3! must be re-
placed byg02g1c

2, but, according to what was said abov
we neglect this change.

Now, at the first stage of the perturbation theory, we co
pletely neglect gain and losses and consider only TOD
assume that the soliton will have the form

U~z,T!5a~T!exp@ iqz1 if~T!#, ~4!

whereq is the propagation constant.
Our aim is to find the modulation of the soliton’s pha

~i.e., the local chirp! generated by this perturbation. Insertin
Eq. ~4! into Eq. ~3!, we obtain, in the lowest-order approx
mation, the following equation:

~a2fT!T52eaaTTT ,

which can be immediately integrated:

a2fT52e~aaTT2
1
2aT

2!. ~5!

As the zeroth-order approximation, the unperturbed p
file of the soliton’s amplitude:

a~T!5h sech~hT!, ~6!

whereh2 is the soliton’s peak power can be used.
Hence taking into account only TOD the solution for th

envelope is written now as~see also@20#!

u~z,t!5h sech@h~t2cz!#

3expF i S h2

2
z2Vt23eh tanh@h~t2cz!# D G ,

~7!

with V52~eh21c!. Evidently, the solution~7! is chirped.
Hence the mean frequencyv differs fromV. As usual it is
defined by the ratio of the momentum and the energy wh
givesv5eh22c5V12eh2. This result reflects that~in first
order of TOD andc! the soliton can exhibit any, but o
course small, velocity in dependence on its frequencyv. It
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can even rest provided that the initial pulse has the freque
v5eh2. The chirp does not depend on the propagation d
tance if the soliton rests. Now it is clear that there is
unique equilibrium velocityc if only TOD acts. But one can
expect that BLA selects from this spectrum a particular
locity due to its preference for definite frequencies.

The next step of the perturbation theory is to take in
account the gain and losses, and to find then an equilibr
soliton solution. Actually, the perturbation theory must yie
the values of the two unknown parametersh andc that cor-
respond to the equilibrium in the presence of gain and los
The simplest way to do this is to make use of the so-ca
balance equations @18# for the soliton’s energy
E[* 2`

1`uU(T)u2dT and momentumP[ i*2`
1`UT*UdT. In

the absence of the gain and dissipation, they are obv
integrals of motion. To obtain the equilibrium solution in th
presence of these small perturbations, one should dem
that this conservation is maintained with respect to varyingz.
To perform the actual calculation, the full perturbed NLS
Eq. ~3!, is used and the expressions~6! for a(T) and~5! for
fT are eventually inserted.

The balance equation for the energy leads, in the low
approximation, to the well-known result for the amplitud
@18#,

h253g0~g112g2!
21. ~8!

In this expression, we completely neglect all the additio
contributions related to the velocityc. We have calculated
those corrections too. However, for the numerical values
the parameters used below, they have changed the final r
by no more than 1%.

The calculation of the momentum balance is a nontriv
element of the present approximation. We find

c5e~2 3
2g0 /g11

27
10h21 7

5h2g2 /g1!. ~9!

Now, it remains to insert the expression~8! into Eq. ~9! to
obtain the eventual result

c5
3

5
e

g0

g1

~11g112g2!

~g112g2!
. ~10!

Settingg250, we obtain from Eq.~9! c5e33
5 g0/g1 @23#.

Thus we have the analytical prediction for the velocity
which the soliton is expected to move in the equilibriu
cy
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state under the combined action of TOD, BLA, and NL
The comparison of this result~10! with the outcome of the
AST @8# and the data obtained by direct numerical integ
tion of Eq.~1! in using the beam-propagation method~BPM!
is presented in Fig. 1 and Table I. It is evident from Fig.
that AST only yields reliable results if TOD is weak~e
,0.075! whereas for strong TOD~e50.2! and for the com-
bined action of TOD and BLA it fails completely. This ca
be explained by the fact that in both cases the pulses acq
a considerable chirp upon propagation~note the large propa
gation distance! which is not accounted for in the conven
tional AST. The primary result we can read off from Fig. 1
that the two-stage perturbation model provides reason
results as far as TOD and BLA act jointly. We note, ho
ever, that the second stage of the approach cannot be im
mented if no BLA is present. The reason is that it essentia
exploits the existence of the equilibrium soliton veloci
which can be derived only in the presence of all~including
dissipative! perturbations.

Finally, in Table I the analytical results~10! are compared
with the numerical findings for different values of TOD

FIG. 1. Inverse equilibrium velocityc vs strength of third-order
dispersion provided by different methods. BLA perturbatio
g050.01 and g150.03; dashed line: BPM ~distance of
propagation—50 soliton periods!; dotted line: two-stage model—
Eq. ~10!; dash-dotted line: AST. For completeness we have ad
the BPM results without BLA~solid line!. Note that AST provides
the same results for the cases with and without BLA.
rtur-
TABLE I. Comparison of the inverse equilibrium velocity calculated by BPM and the two-stage pe
bation theory@Eq. ~10!#. Note that the casee50.2,g050.05, andg150.15 corresponds to Fig. 14 of Ref.@8#
and this withe50.2,g050.02,g150.15, andg250.045 to Fig. 4 of Ref.@9#.

e g0 g1 g2 can cnum Err ~%!

0.1 0.01 0.03 0 0.22 0.216 2
0.1 0.03 0.09 0 0.22 0.216 2
0.1 0.05 0.15 0 0.22 0.216 2
0.2 0.01 0.03 0 0.44 0.45 2
0.2 0.03 0.09 0 0.44 0.422 4
0.2 0.05 0.15 0 0.39 0.44 10
0.2 0.05 0.15 0.05 0.28 0.26 8
0.2 0.05 0.15 0.2 0.15 0.145 3
0.2 0.02 0.15 0.045 0.44 0.466 6
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BLA, and NLG. Herecan and cnum stand, respectively, fo
the analytical prediction~10! and numerical value, and
‘‘Err’’ is ucan2cnumu/cnum ~in percent!. ~Note that the case
considered earlier in@8,9# are included there.! The agreemen
between the analytical and numerical results is surprisin
good even when the BLA parametersg0 and g1 are of the
same order of magnitude as the TOD coefficiente, which
indicates that the two-stage perturbation theory holds also
this case. The analytical results become less accurate for
strong TOD and comparable BLA, but the agreement is s
quite satisfactory.

In conclusion, we have used a two-stage perturbation
proach to analytically derive the equilibrium velocity so
tons acquired in nonlinear optical fibers in the presence
bandwidth-limited amplification, and nonlinear gain or lo
and strong third-order dispersion. Such a perturbation a
proach is a simple way to go beyond the adiabatic appr
mation of the soliton perturbation theory. We found that t
approach rather than the conventional adiabatic soliton
turbation theory has to be used if TOD acts together w
BLA. This holds even for a weak TOD provided that th
propagation distance is large. The physical origin of this
havior is the chirp that the soliton acquires due to eit
t.
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f
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i-
s
r-
h
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r

effect and which is not accounted for in the convention
adiabatic perturbation theory. The results were found in r
sonable agreement with recent numerical observations@9,8#.

Finally we mention that the approach used here can
likewise applied if the Raman self-frequency shift and
self-steepening are added to TOD, which is typically the c
if femtosecond pulses are concerned. Moreover, it might
reasonable to consider the soliton-soliton interactions in
presence of TOD and BLA by applying this perturbatio
technique. A strong reduction of soliton interactions in t
presence of BLA and TOD numerically observed@9,8# can
be attributed to the acquired chirp. This interpretation of n
merical studies is supported by the observation that chir
solitons ~exact solutions of the Ginzburg-Landau equati
with BLA and NLG! exhibit a considerably reduced intera
tion force@24#. Moreover, it is possible to predict, following
the approach of@25#, that all the two-soliton bound state
will be destroyed when the velocityc exceeds a certain criti
cal value. These issues will be considered in detail e
where.
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