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“Two-stage” perturbation theory for bandwidth-limited amplification of optical solitons
near the zero-dispersion point
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We show that soliton propagation in transmission lines where bandwidth-limited amplification, nonlinear
gain or loss, and a strong third-order dispersion are present can be reasonably described in terms of a “two-
stage” perturbation theory. In contrast to the adiabatic soliton perturbation theory which is known to fail
beyond a critical strength of third-order dispersion, a modulation of the soliton phase caused by third-order
dispersion is taken into account in this approd&1063-651%97)07302-9

PACS numbes): 42.81.Dp

Among others, there are two fundamental problems ilNLSE family which is correct up to the second order in the
using solitons in optical fiber communication lines: to reduceTOD coefficient[13,6]. The frequently used adiabatic ap-
the fiber dispersiorthowever, keeping it anomaloysn or- proximation of the soliton perturbation _theory for_the NLSE
der to allow the weak Kerr nonlinearity to produce a suffi- (AST) (see[15-17 and [18] for a review describes the
ciently narrow soliton, and to compensate the dissipativéOI'tO” velocity in first order of the TOD coefficient, but fails
losses in long-haul systenig], simultaneously suppressing to provide the frequency shiffL,8]. Only recently it has been

the noise. In order to cope with the former problem. a Carrieshown that this frequency shift can also be obtained in this
: P P ’ model provided that the constraint of the adiabatic evolution

wavelength near the zero-dispersion pol@DP) can be g jifted [5]. This means that the mutual interaction of the
used, which in addition leads to the reduction of the solitonygnresonant radiation and the soliton, both propagating with
peak power. The latter problem can be resolved by means @he same velocity, has been taken into accdt For the
bandwidth-limited amplificationBLA), i.e., the combined sake of simplicity we use the term “velocity” although ac-
action of optical amplifiers and filters. tually an inverse velocity is meant.

A complicating factor is that third-order dispersiffOD) The effect of TOD as well as that of TOD in combination
has usually to be taken into account near the ZDP. Althoughvith BLA on the two-soliton interaction has been recently
TOD is a Hamiltonian perturbation it gives rise to the emis-Studied[8,19] by using the AST. Provided that a weak TOD

sion of radiation where the so-called resonance radiatioﬁ"&s,th% (f)hly %grtu:bation, a Igo_od ;algt]'reemr(lant \t’)"ith rfesultg
separates from the soliton and can entail a complete destru@e 2N€d Tom direct numerical simu'ations nas been foun
|. However, for increased, but still realistic values of TOD,

fion of ihe soliton [Zfs]' Moreover, TOD Ieac_is_ to the the AST has been shown to fail. In particular, the velocity
breakup of the two-soliton bound sta®6-8. Butitis also  jynased on the soliton by TOD may differ by a factor of 2 if
known that other perturbations can be exploited to SUPPres&ST and numerical methods are compajf@d If only TOD
these detrimental effects of TOD. It was shown[@] that,  acts as a perturbation this discrepancy between the numerical
e.g., the decay of the two-soliton bound state can be avoideshd an analytical approach can be reduced in using the
if BLA comes into play. Moreover, it has been predicted model of Kodamaet al. [9]. Unfortunately, this model can-
[8,10] and experimentally verified latefpi1] that BLA may not be applied to non-Hamiltonian perturbations such as,
absorb the emitted resonance radiation, thus lending the sok.g., BLA and nonlinear loss or gaifLG). Basically, there

ton a much better stability. Thus in view of these observaare two options to explain the failure of AST, viz., either the
tions it is necessary to analyze the dynamical properties admission of resonance radiatip8] or the nonadiabatic be-
solitons in the presence of several qualitatively different perhavior of the soliton. One is inclined to prefer the latter ex-

turbations. planation because BLA absorbs the resonance radiation
The effect of TOD on the dynamical behavior of a single[8,11], as already mentioned above.
soliton has been intensively studi¢d?2,13,6,14,4,5 The Recently, the soliton propagation was investigated under

soliton velocity and frequency shifts which appear due to thehe combined action of TODntroduced by the filter BLA,
presence of TOD can correctly be described by transformingnd sliding[20]. As an interesting result an asymmetry for
the pertinent perturbed nonlinear Sdtiimger equation up and down sliding was found with respect to the gain
(NLSE) into a perturbed, but integrable equation of therequired to compensate for the losses. The basic idea of the
perturbation approach used was to distinguish between two
groups of perturbations and to treat them consecutively. In
*Permanent address: Department of Applied Mathematics, Schothe first stage a phase modulatiGhirp) induced by TOD
of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, has been taken into account. Having plugged this ansatz into
Israel. Electronic address: malomed@leo.math.tau.ac.il the evolution equations for the energy and the momentum,
"Permanent address: Institute of Electronics, Bulgarian Academghe dynamics of the soliton amplitude and mean frequency
of Science, Boulevard Tsarigradsko shosse 72, Sofia 1784, Butue to BLA and sliding filtering has been studied. The results
garia. obtained were in good agreement with direct numerical
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simulations. This is in some respect surprising because the u(z,7)=U(z,T)explicT— 3c?z). 2
above separation might suggest that TOD has to bstthe-
gestperturbation whereas the authors analyzed just the oph the case of the usual NLS equation, this is tantamount to
posite cas¢20]. Moreover, it has been shown previouf8}  the Galilean transform.
that the usual AST holds for the strength of TOD assumed in The transformed equation will receive many additional
that paper. Hence the natural question arises whether thisrms. However, we expect that the velocityto be pro-
“two-stage” perturbation theory can reproduce the numeri-duced by the perturbation, will eventually have a certain
cal results which were obtained earlier for a fairly strongsmallness, which will indeed be justified by the final result.
TOD [8] and were in clear disagreement with the AST. This fact allows one to omit all terms in the transformed

The aim of the present paper is therefore to disclose thequation proportional to different powers @fexcept for the
potential of this two-stage approach for the case where TOBingle one—2cy,U+, which is produced by insertion of Eq.
is the primary perturbation and linear BLA as well as non- (2) into the dispersive lossy term in E¢l). While all the
linear loss or gain are considerably weaker. Moreover, it i®ther small terms will produce only small corrections to ef-
intended to identify the limits of applicability of AST as far fects accounted for by the larger terms, this one will give rise
as an increasing TOD is concerned. to a new effect: a driving force which forces the soliton to

We mention that recently a similar two-stage perturbationmove with a finite velocityc. Thus the final form of the
strategy has proven to be quite effective in another problenperturbed NLS to be considered in the present work is
related to optical solitons, namely, the search for a soliton in N ) . ) .
a model of a dual-core fiber, with BLA in one core and pure 'Yz ™" sUrrt|U[fU=ieUrrrtiyoU+iyUrr—2cy, Uy
losses in anothd21]. In this case, the coupling between the i 2

; : . 2| U[?U. (©)]

two cores was taken into account first as a relatively strong
perturbation. This has allowed construction of a correspondNotice that, actually, the net gaip, in Eq. (3) must be re-
ing two-component soliton, for which the gain and lossesplaced byyo—ylcz, but, according to what was said above,
were next considered as the small perturbations. This apwe neglect this change.
proach has allowed analytical prediction of the existence of a Now, at the first stage of the perturbation theory, we com-
stable soliton in the model. Very recently, these analyticapletely neglect gain and losses and consider only TOD and

results have been corroborated by direct simulatj@a3. assume that the soliton will have the form
Because of the prominent role TOD plays in our case we _ _
first take into account a modulation of the phase induced by U(z,T)=a(T)exdiqz+i¢(T)], (4)

TOD, and then apply to the modifie@hirped soliton the . .

familiar technique$18] which allow us to handle effects of WNered is the propagation constant. .

linear or nonlinear gain and losses and filtering. However, it Our aim is to.flnd the modulathn of the sqhton S phgse
will turn out that this procedure can even be applied if TOD(l.e., the local chirpgenerated by this perturbation. Inserting

and the remaining perturbations are comparable. This mear _(4) into Eq. (3)_’ we obta_ln, in the lowest-order approxi-
that a strong TOD is a sufficient, but not a necessary condilation, the following equation:
tion for the applicability of the two-stage model. We note 2 -
that the model used here resembles that put forward lately (@ ¢r)r=2eaarrT,
and referred to aboVj@0] but differs in details. Moreover, in  \which can be immediately integrated:
the present paper a completely different issue is addressed.

The model combining TOD, BLA, and NLG is based on a’pr=2e(aarr— %a%). (5)
the following perturbed averaged nonlinear Sclinger
equation for the envelope(z,7) of the electromagnetic ~ As the zeroth-order approximation, the unperturbed pro-
waves in the fiber, where, as usualtands for the propaga- file of the soliton’s amplitude:
tion distance and is the so-called reduced tini8,8]:

a(T)=n sechinT), (6)

iU+ 3u.+[ulPu=ieu, +iyou+iyyu,,—iy,lul?u. where 77 is the soliton’s peak power can be used.
Hence taking into account only TOD the solution for the

envelope is written now asee alsd20])
Here e is the TOD coefficient andy, is the net gain, while
the coefficienty; accounts for the linear losses due to the U(z,7)=7 seclin(r—c2z)]
finite amplifier or filter bandwidth. Furthermore, we have 2
taken into account nonlinear losses or gain, the strength of xex;{i(% z—Q7—3en tanif n(r—cz)])
which is described byy,. Two-photon absorption corre-
sponds toy,>0 whereas saturable absorption or nonlinear (7)
amplification in a loop mirror corresponds $9<<0.

We expect that the soliton will depend dr=7—cz, ¢ with Q=—(er?+c). Evidently, the solution7) is chirped.
being the unknown inverse equilibrium velocity of the soli- Hence the mean frequeney differs from (). As usual it is
ton. To obtain a solution of this form it is natural to trans- defined by the ratio of the momentum and the energy which
form Eq. (1) into the coordinatesz(T). This transformation gives w=enP—c=0+2e7?. This result reflects thain first
will, obviously, produce the group velocity termicu;. To  order of TOD andc) the soliton can exhibit any, but of
eliminate this term, we introduce the new field variable course small, velocity in dependence on its frequewncyt
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can even rest provided that the initial pulse has the frequency
w=e7’. The chirp does not depend on the propagation dis-
tance if the soliton rests. Now it is clear that there is no
unique equilibrium velocity if only TOD acts. But one can 04|
expect that BLA selects from this spectrum a particular ve-
locity due to its preference for definite frequencies.

. X . o 03}
The next step of the perturbation theory is to take into
account the gain and losses, and to find then an equilibrium ;3’
soliton solution. Actually, the perturbation theory must yield > 02}

the values of the two unknown parameterandc that cor-
respond to the equilibrium in the presence of gain and losses.
The simplest way to do this is to make use of the so-called
balance equations [18] for the soliton's energy
E=/Z|U(T)|?dT and momentumP=if*ZU*UdT. In 0
the absence of the gain and dissipation, they are obvious
integrals of motion. To obtain the equilibrium solution in the
presence of these small perturbations, one should demand g, 1. Inverse equilibrium velocity vs strength of third-order
that this conservation is maintained with respect to varying gispersion provided by different methods. BLA perturbation:
To perform the actual calculation, the full perturbed NLSE,,,=0.01 and 9,=0.03; dashed line: BPM (distance of
Eq. (3), is used and the expressiof® for a(T) and(5) for propagation—50 soliton periogsdotted line: two-stage model—
¢ are eventually inserted. Eq. (10); dash-dotted line: AST. For completeness we have added
The balance equation for the energy leads, in the loweshe BPM results without BLAsolid line). Note that AST provides
approximation, to the well-known result for the amplitude the same results for the cases with and without BLA.
[18],

0.1}

third order dispersion, €

state under the combined action of TOD, BLA, and NLG.
7°=3yo(y1+2y2) . (8)  The comparison of this resuli.0) with the outcome of the
i ) . AST [8] and the data obtained by direct numerical integra-
In this expression, we completely neglect all the additionaly, of Eq.(1) in using the beam-propagation meth@&PM)
contributions related to the velocity. We have calculated g presented in Fig. 1 and Table I. It is evident from Fig. 1
those corrections too. However, for the numerical values of,5t aST only yields reliable results if TOD is weale
the parameters used below, they have changed the final res@o_ws whereas for strong TODe=0.2) and for the com-
by no more thqn 1%. , .. bined action of TOD and BLA it fails completely. This can
The calculation of the momentum balance is a nontrivialye explained by the fact that in both cases the pulses acquire
element of the present approximation. We find a considerable chirp upon propagatiowte the large propa-
__/_3 272,72 gation distancewhich is not accounted for in the conven-
c=e(=2volntion tsny2lyy). © tional AST. The primary result we can read off from Fig. 1 is

Now, it remains to insert the expressim into Eq. (9 to that the two-stage perturbation model provides reasonable

obtain the eventual result results as far as TOD and BLA act jointly. We note, how-
ever, that the second stage of the approach cannot be imple-
o= 3 70 (11y1+2v,) (10 mented if no BLA is present. The reason is that it essentially

g€ y1 (y1+2y,) exploits the existence of the equilibrium soliton velocity
which can be derived only in the presence of (akcluding
Setting y,=0, we obtain from Eq(9) c=eEyy/y; [23]. dissipative perturbations.
Thus we have the analytical prediction for the velocity at  Finally, in Table | the analytical resulf40) are compared
which the soliton is expected to move in the equilibriumwith the numerical findings for different values of TOD,

TABLE |. Comparison of the inverse equilibrium velocity calculated by BPM and the two-stage pertur-
bation theoryEq. (10)]. Note that the case=0.2, y,=0.05, andy;=0.15 corresponds to Fig. 14 of R¢8]
and this withe=0.2, 1%5=0.02, v,=0.15, andy,=0.045 to Fig. 4 of Ref[9].

€ Yo "1 Y2 Can Chum Err (%)
0.1 0.01 0.03 0 0.22 0.216 2
0.1 0.03 0.09 0 0.22 0.216 2
0.1 0.05 0.15 0 0.22 0.216 2
0.2 0.01 0.03 0 0.44 0.45 2
0.2 0.03 0.09 0 0.44 0.422 4
0.2 0.05 0.15 0 0.39 0.44 10
0.2 0.05 0.15 0.05 0.28 0.26 8
0.2 0.05 0.15 0.2 0.15 0.145 3
0.2 0.02 0.15 0.045 0.44 0.466 6
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BLA, and NLG. Herec,, andc,,, stand, respectively, for effect and which is not accounted for in the conventional
the analytical prediction(10) and numerical value, and adiabatic perturbation theory. The results were found in rea-
“Err” is |Can—Cpuml/Crum (in percent. (Note that the cases sonable agreement with recent numerical observafig.
considered earlier if8,9] are included thergThe agreement Finally we mention that the approach used here can be
between the analytical and numerical results is surprisinglyikewise applied if the Raman self-frequency shift and/or
good even when the BLA parameteyg and y, are of the  self-steepening are added to TOD, which is typically the case
same order of magnitude as the TOD coefficienihich it femtosecond pulses are concerned. Moreover, it might be
indicates that the two-stage perturbation theory holds also fofeasonable to consider the soliton-soliton interactions in the
this case. The analytical results become less accurate f_or Vehfesence of TOD and BLA by applying this perturbation
strong TOD and comparable BLA, but the agreement is stilechnique. A strong reduction of soliton interactions in the

quite satisfactory. _ presence of BLA and TOD numerically observgj8] can

In conclusion, we have used a two-stage perturbation apse attributed to the acquired chirp. This interpretation of nu-
proach to analytically derive the equilibrium velocity soli- merical studies is supported by the observation that chirped
tons acquired in nonlinear optical fibers in the presence ofyitons (exact solutions of the Ginzburg-Landau equation
bandwidth-limited amplification, and nonlinear gain or lossyith BLA and NLG) exhibit a considerably reduced interac-
and strong third-order dispersion. Such a perturbation ap-tjon force[24]. Moreover, it is possible to predict, following
proach is a simple way to go beyond the adiabatic approxihe approach of25], that all the two-soliton bound states
mation of the soliton perturbation theory. We found that thisj|| pe destroyed when the velocityexceeds a certain criti-
approach rather than the conventional adiabatic soliton pegy| yajue. These issues will be considered in detail else-
turbation theory has to be used if TOD acts together withyhere.

BLA. This holds even for a weak TOD provided that the
propagation distance is large. The physical origin of this be- This work was supported by the Deutsche Forschungsge-
havior is the chirp that the soliton acquires due to eithemeinschaft in the framework of Innovationskolleg INK1/Al.

[1] A. Hasegawa and Y. Kodam&olitons in Optical Communi- [15] D. J. Kaup, SIAM J. Appl. Math31, 121(1976.

cations(Oxford University Press, Oxford, 1985 [16] V. I. Karpman and E. M. Maslov, Zh. Eksp. Teor. Fi&3, 537
[2] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. (1977 [Sov. Phys. JETR6, 281 (1977)].
Lett. 11, 464(1986. [17] V. I. Karpman and V. V. Solov'ev, Physica B, 487(198J).
[3] S. Wen and S. Chi, Opt. Quantum Electr@i, 335(1989. [18] Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phy, 763
[4] J. N. Elgin, Phys. Rev. A7, 4331(1993. (1989.
[5] J. N. Elgin, T. Brabec, and S. M. J. Kelly, Opt. Commuaf4, [19] A. B. Aceves, C. D. Angelis, G. Nalesso, and M. Santagius-
321(1995. tina, Opt. Lett.19, 2104(1994).
[6] Y. Kodama and A. Hasegawa, IEEE J. Quantum Elect@is- [20] E. A. Golovchenko, A. N. Pilipetskii, C. R. Menyuk, J. P.
23, 510(1987. Gordon, and L. F. Mollenauer, Opt. Left0, 539 (1995.
[7] C. Desem and P. L. Chu, i@ptical Solitons—Theory and [21] B. A. Malomed and H. G. Winful, Phys. Rev. &3, 5365
Experiment edited by J. R. TaylofCambridge University (1996.
Press, Cambridge, England, 199@. 127. [22] J. Atai and B. A. Malomed, Phys. Rev. 3, 4371(1996.
[8] I. M. Uzunov, M. Gdles, and F. Lederer, Phys. Rev. 3, [23] In the framework of the modgPR0] one gets another equilib-
1059(1995. rium  velocity, c=€2yyy,. The reason is that
[9] Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, Opt. q=—A(Q+75A% in [20] has to be read as
Lett. 19, 165(1994. q=A(— Q+ 53A?). Otherwise Eq(4) is not a solutior(in first
[10] I. M. Uzunov, M. Gdles, and F. Lederer, Electron. Le80, order ofe and(}) to the NLSE perturbed by TOD. Note, how-
882(1994). ever, that this does not influence the accuracy of Egisand
[11] K. Iwatsuki (unpublishedl (6) in [20].
[12] A. Hasegawa and Y. Kodama, Proc. IEBE, 1145(1981)). [24] 1. M. Uzunov, R. Muschall, M. Gltes, F. Lederer, and S.
[13] Y. Kodama, J. Stat. Phy89, 597 (1985. Wabnitz, Opt. Communl18 577 (1995.

[14] L. Gagnon and P. A. Belanger, Phys. Rev43, 6187(199). [25] B. A. Malomed, Phys. Rev. B7, 2874(1993.



